This article was downloaded by:
On: 26 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Liquid Crystals

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713926090
Orientational ordering in nematic liquid crystals $1 C B-d_{11}$ dissolved in 5CBd_{o}
A. L. Bailey ${ }^{\text {a }}$; G. S. Bates ${ }^{\text {a }}$; E. E. Burnella ${ }^{\text {a }}$ G. L. Hoatson ${ }^{\text {b }}$
${ }^{a}$ Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada ${ }^{\text {b }}$ Department of Physics, College of William and Mary, Williamsburg, Virginia, U.S.A.

To cite this Article Bailey, A. L. , Bates, G. S. , Burnell, E. E. and Hoatson, G. L.(1989) 'Orientational ordering in nematic liquid crystals 1CB-d ${ }_{11}$ dissolved in 5CB-d ${ }_{6}$, Liquid Crystals, 5: 3, 941 - 952
To link to this Article: DOI: 10.1080/02678298908026400
URL: http://dx.doi.org/10.1080/02678298908026400

PLEASE SCROLL DOWN FOR ARTICLE

> Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
> This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.
> The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Orientational ordering in nematic liquid crystals

1CB-d ${ }_{11}$ dissolved in 5CB-d ${ }_{6}$

by A. L. BAILEY, G. S. BATES and E. E. BURNELL
University of British Columbia, Department of Chemistry, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Y6
G. L. HOATSON
College of William and Mary, Department of Physics, Williamsburg, Virginia 23185, U.S.A.

Abstract

The ${ }^{2} \mathrm{H}-\mathrm{N} . \mathrm{M} . \mathrm{R}$. spectra of mixtures of the non-mesogenic compound 4 -cyano-4^{\prime}-methylbiphenyl (1CB) and the nematic liquid crystal 4 -cyano- $4^{\prime}-n$-pentylbiphenyl (5 CB) are measured as a function of concentration and temperature. Concentrations of up to $25 \mathrm{~mol} \% 1 \mathrm{CB}$ have no effect on the N.M.R. spectrum and therefore on the orientational order of 5 CB at a given reduced temperature. The order matrix of the ICB is calculated from the measured quadrupole couplings. The results are analysed in terms of a model for orientational order that includes two anisotropic terms: (a) interaction between the molecular quadrupole moment and the mean electric field gradient of the medium, and (b) short range repulsive interactions. An estimate of the molecular quadrupole moment tensor of 1 CB is obtained from the analysis.

1. Introduction

The intermolecular forces responsible for orientational ordering in liquid-crystalline systems have been the subject of much interest in recent years. Results from N.M.R. experiments in particular have yielded a wealth of experimental information. There is yet, however, no complete description of the mechanisms responsible for the orientational order. One problem is that the interpretation of experimental data is fraught with difficulty because of the asymmetry and flexibility of the liquid crystal molecules.

One very fruitful approach to the problem of orientational order has been the study of small solutes dissolved in nematic liquid crystals. Because of their rigidity and high symmetry, these solutes have provided a useful testing ground for ideas of orientational ordering. Various properties have been used in modelling orientational order, including dispersion forces [1], molecular moments of inertia [2, 3], size and shape [4], polarizability [5] and quadrupole moments [6]. A particularly successful approach has involved a model in which there are two interactions between the liquid crystal and the solute [7-11]. The first interaction is between the average electric field gradient due to the liquid crystal and the molecular quadrupole moment of the solute [6-8, 12, 13]. The second treats short range interactions by modelling the solute as a collection of van der Waals spheres which distorts the assumed elastic continuum of the liquid crystal [7-11, 14, 15].

Of course, the liquid crystal molecules are essentially large, flexible asymmetric solute molecules, and any theory for solutes should be capable of explaining results for liquid crystal molecules themselves. This has been shown to be the case in a
preliminary study of the liquid crystal $5 \mathrm{CB}-\mathrm{d}_{19}$ dissolved in a $55 \mathrm{wt} \%$ mixture of Merck ZLI-1132 in N-(4-ethoxybenzylidene)- $4^{\prime}-n$-butylaniline (EBBA) [15]. In this special mixture at 301.4 K the electric field gradient/molecular quadrupole moment mechanism is taken as unimportant, and a reasonable fit between experiment and theory is obtained with the short range interaction model.

In order to perform similar calculations on other liquid-crystalline systems in which the mean electric field gradient may not be zero, it is necessary to know the molecular quadrupole moment tensor of each conformation of the liquid crystal molecule of interest. The determination of molecular quadrupole moments, even for small symmetrical molecules, is a notoriously difficult task. Thus, to help extend ideas of orientational ordering of solutes to liquid crystals in general, it seems worthwhile to study a rigid solute molecule of high symmetry that is close in structure to compounds known to have mesogenic properties. For this purpose we have chosen to study 1CB (4-cyano-4'-methylbiphenyl) as a solute in the liquid crystal 5CB (4-cyano-4'-n-pentylbiphenyl).

1 CB is the first in the series of n-alkylcyanobiphenyls. It is non-mesogenic, unlike several members of the series, and it is rigid in the sense that it lacks an extended alkyl chain. Yet it is only the length of the alkyl chain which distinguishes ICB structurally from the liquid crystal 5 CB . Our hope was that 1 CB would not disturb the 5 CB environment, and that the orientation of 1 CB in 5 CB could be predicted using the two-mechanism model described above. In order to study the system by ${ }^{2}$ H-N.M.R. we used $1 \mathrm{CB}-\mathrm{d}_{11}$ and $5 \mathrm{CB}-\mathrm{d}_{6}$ selectively deuterated at the 1,4 and 5 positions of the alkyl chain to ensure no overlapping signals in the spectra (see figure 1). In addition, perdeuterated 5 CB was used to obtain a spectrum of the pure material.

Figure 1. Structures of $5 \mathrm{CB}-\mathrm{d}_{6}$ and $1 \mathrm{CB}-\mathrm{d}_{11}$ with definition of the molecular axis system used in the determination of the 1 CB order matrix. Geometrical parameters used in the calculation are as follows: dihedral angle between the rings $=30^{\circ}$ [22]; the y axis makes a 15° angle with each ring; the x and y axes bisect the planes of the two rings; all aromatic ring angles, CCC and $\mathrm{CCH}=120^{\circ}$; methyl group angles $=109.47^{\circ}$ (tetrahedral); van der Waals radii taken from [23]; bond lengths in Ångströms: C-C ring $=1.397, \mathrm{C}-\mathrm{H}$ ring $=1.09, \mathrm{C}_{\text {melhyl }}-\mathrm{C}_{\text {ring }}$ and $\mathrm{C}_{\text {ring }}-\mathrm{C}_{\text {ring }}=1.52, \mathrm{C}-\mathrm{H}$ methyl $=$ $1 \cdot 09, \mathrm{C}-\mathrm{CN}=1 \cdot 44, \mathrm{C}-\mathrm{N}=1 \cdot 158$.

Our approach to studying this problem is to determine first the extent to which the environment of 5 CB is disturbed by 1 CB . Next the order matrix of 1 CB is calculated as a function of temperature and concentration from the ${ }^{2}$ H-N.M.R. spectra. These results, together with data for 1 CB in $55 \mathrm{wt} \%$ 1132/EBBA [15], molecular deuterium in 5CB [10], and various small solutes both in $55 \mathrm{wt} \% 1132 /$ EBBA [11] and in 5CB [10] are used to obtain an estimate of the molecular quadrupole moment of 1 CB at
a single temperature. The two mechanism model is then tested by comparing its prediction of temperature dependence of the order matrix of 1 CB in 5 CB with experimental results.

2. Experimental

The $1 \mathrm{CB}-\mathrm{d}_{11}, 5 \mathrm{CB}-\mathrm{d}_{6}$ and $5 \mathrm{CB}-\mathrm{d}_{19}$ were prepared by coupling copper cyanide and the bromination products of the appropriately deuterated alkylbiphenyls [15]. Samples of $1 \mathrm{CB}-\mathrm{d}_{11}$ dissolved in $5 \mathrm{CB}-\mathrm{d}_{6}$ were prepared in concentrations of 3,10 and $25 \mathrm{~mol} \%$. Homogeneous dissolution was achieved by vortex mixing in the isotropic phase. The samples were degassed by repeated freeze-pump-thaw cycles and sealed under vacuum in 8 mm o.d. tubes. A pure sample of $5 \mathrm{CB}-\mathrm{d}_{19}$ was similarly prepared.

The ${ }^{2}$ H-N.M.R. signals were recorded on a modified Bruker BKR-322s spectrometer operating at 30.7 MHz , using a spin-echo sequence with phase cycling and a ($\pi / 2$) pulse length of $10 \mu \mathrm{~s}$. Temperature was controlled to within $\pm 0.5 \mathrm{~K}$ with an airflow system.

Nematic-isotropic transition temperatures were determined using a Nikon Optiphot Pol polarizing microscope with a heating rate of $4 \mathrm{mK} \mathrm{h}^{-1}$. The temperature was controlled to within 1 mK by a heating wire around the sample cell connected via an integral proportional amplifier to a Wheatstone bridge which compared the resistance from a thermistor in the sample cell to a known resistor. The transition temperatures for 1 CB and 5 CB mixtures of various compositions are given in table 1 .

Table 1. Nematic-isotropic transition temperatures for mixtures of ICB dissolved in 5 CB at various compositions. T_{NI}^{+}is the temperature at which the nematic phase is first observed on cooling the isotropic liquid, and T_{N}^{-}is the temperature at which, upon further cooling, the last of the isotropic phase disappears. Temperatures are accurate to within $0.004^{\circ} \mathrm{C}$.

$(5 \mathrm{CB}: 1 \mathrm{CB}) / \mathrm{mol} \%$	$T_{\mathrm{Nl}}^{-} /{ }^{\circ} \mathrm{C}$	$T_{\mathrm{NI}}^{+} /{ }^{\circ} \mathrm{C}$
$100: 0$	34.641	$34 \cdot 645$
$90: 10$	34.690	34.863
$82: 18$	36.078	36.306
$78: 22$	36.416	36.805
$74: 26$	36.827	37.320
$69: 31$	37.745	38.008

3. Results and discussion

A typical spectrum of $1 \mathrm{CB}-\mathrm{d}_{11}$ in 5CB- d_{6} is shown in figure 2 . The signals for the deuterons on the 1,4 and 5 positions of the 5 CB appear as the more intense peaks lacking fine structure. The remaining two groups of signals come from the 1 CB ring and methyl deuterons, the latter having the larger quadrupolar splitting. In determining the order matrix of 1 CB , we use the frequencies of the most intense peak in the methyl signal and the ring signal with the largest quadrupolar coupling.

3.1. $5 C B$

An important feature of the results is that, other than changes in the nematicisotropic transition temperature, the average orientation of 5 CB appears to be unaffected by the $1 C B$ over the entire nematic temperature range. In fact, except for

Figure 2. ${ }^{2} \mathrm{H}$-N.M.R. spectrum of $10 \mathrm{~mol} \% 1 \mathrm{CB}-\mathrm{d}_{11}$ in $5 \mathrm{CB}-\mathrm{d}_{6}$ at 294 K .
the $25 \mathrm{~mol} \%$ sample below 296 K , the quadrupolar splittings of deuterons on the 1,4 and 5 positions of the $5 \mathrm{CB}-\mathrm{d}_{6}$ are constant for a given reduced temperature independent of the concentration of 1 CB . A plot of these splittings against reduced temperature is given in figure $3(a)$. The differences for the $25 \mathrm{~mol} \%$ sample below 296 K ($T_{\mathrm{r}}=0.96$) may be a result of formation of a smectic phase, evidenced by the appearance of the sample and a characteristic change of slope in the order matrix results.

The strongest evidence that the 5 CB environment remains relatively unchanged is that the plot of the ratio of quadrupolar splittings of the 4 and 1 positions on the chain versus the splittings for the 1 position is independent of the concentration of 1CB (figure $3(b)$). Similar plots for 5 CB as a solute [15] have shown such ratios to be very sensitive to: (a) changes in the asymmetry of the molecular order matrix and/or (b) conformational averaging of the 5 CB . Figure 3 (c) shows that plots of the quadrupolar couplings in 5 CB against the order parameters of the 1 CB fall on universal curves consistent with the mean field theory of mixtures [16-18].

3.2. ICB order matrix

The two measured quadrupolar couplings of the $1 \mathrm{CB}-\mathrm{d}_{11}$ can be used to calculate the molecular order matrix using the approximation that 1 CB has D_{2} symmetry. In fact $1 C B$ has only C_{2} symmetry and determination of one off-diagonal element of the order matrix, $S_{x y}$, in the axis system defined in figure 1, would be required for a rigorous analysis. In this paper we assume that $S_{x y}$ is zero. Indeed, in the calculations for the model reported below, $S_{x y}$ is found to be very small (<0.3 per cent of $S_{z z}$, which justifies this assumption.

If the asymmetry parameter, η_{q}, is zero for a methyl $\mathrm{C}-\mathrm{D}$ bond, and if the methyl group rotates freely about the molecular z axis, $S_{z z}$ of 1 CB can be found directly from the quadrupole splitting of the methyl group deuterons by

$$
\begin{equation*}
\Delta v_{\mathrm{Q}}=\frac{3}{2} \frac{e^{2} q Q}{h} P_{2}(\cos \zeta) S_{z z} \tag{1}
\end{equation*}
$$

where ζ is the angle between the $\mathrm{C}-\mathrm{D}$ bond and the z axis, eq is the axially symmetric electric field gradient at the methyl deuteron, $e Q$ is the deuteron nuclear quadrupole moment, P_{2} is the second Legendre polynomial, and h is Planck's constant.

Figure 3. (a) Plots of the three measured quadrupolar splittings of $5 \mathrm{CB}-\mathrm{d}_{6}$ against reduced temperature (T / T_{NI}): $\times 3$ mol $\% 1 \mathrm{CB}-\mathrm{d}_{11} ; \square, 10 \mathrm{~mol} \% 1 \mathrm{CB}-\mathrm{d}_{11}$; . $25 \mathrm{~mol} \% 1 \mathrm{CB}-\mathrm{d}_{11}$.Splittings for pure $5 \mathrm{CB}-\mathrm{d}_{19}$ are shown as \quad. (b) Ratios of the quadrupolar splitting of the 4 to the 1 position of the 5 CB alkyl
 (c) Plots of the three measured quadrupolar splittings of $5 \mathrm{CB}-\mathrm{d}_{6}$ against the order parameter $S_{z z}$ of $1 \mathrm{CB}-\mathrm{d}_{11}: x, 3 \mathrm{~mol} \% 1 \mathrm{CB}-\mathrm{d}_{11}$; $\square, 10 \mathrm{~mol} \% 1 \mathrm{CB}-\mathrm{d}_{11}$; ,$+ 25 \mathrm{~mol} \% 1 \mathrm{CB}-\mathrm{d}_{11}$.

For the ring deuterons, the asymmetry in the electric field gradient tensor must be considered and the splitting is given by

$$
\begin{equation*}
\Delta v_{\mathrm{Q}}=\frac{3}{2} \frac{e^{2} q_{b b} Q}{h}\left[S_{b b}+\frac{1}{3} \eta_{q}\left(S_{a u}-S_{c c}\right)\right] \tag{2}
\end{equation*}
$$

where η_{q} is the asymmetry parameter $\left(q_{a a}-q_{c c}\right) / q_{b b}$ taken as 0.041 [19], and (a, b, c) is a coordinate system with b along the $\mathrm{C}-\mathrm{D}$ bond and a in the plane of the ring. The required values of the order matrix in the (a, b, c) coordinate system are related to those in the (x, y, z) molecular system by a coordinate transformation. The signs of the quadrupolar splittings are chosen to give values of $S_{z z}>0.5$ at low temperature and reasonably small values of $S_{y y}-S_{x x}$.

For each concentration and temperature the diagonal elements $S_{x x}, S_{y y}$ and $S_{z z}$ of the order matrix of 1CB have been determined using equations (1) and (2) with values of $e^{2} q Q / h$ equal to 168 kHz for methyl and 188 kHz for ring deuterons, the geometrical parameters given in the caption to figure 1 , and the fact that the order matrix is traceless. The resultant values of $S_{z z}$ and $S_{y y}-S_{x x}$ are given in table 2. If identical reduced temperatures are considered, the order matrix is independent of concentration.

Table 2. Experimental order parameters for $1 \mathrm{CB}-\mathrm{d}_{11}$ in $5 \mathrm{CB}-\mathrm{d}_{5}$.

T / K	$3 \mathrm{~mol} \% 1 \mathrm{CB}-\mathrm{d}_{11}$		$10 \mathrm{~mol} \% 1 \mathrm{CB}-\mathrm{d}_{11}$		$25 \mathrm{~mol} \% 1 \mathrm{CB}-\mathrm{d}_{11}$	
	$S_{y y}-S_{x x}$	$S_{z z}$	$S_{y y}-S_{x x}$	$S_{z z}$	$S_{y y}-S_{x x}$	$S_{z z}$
305	0.063	0.313	0.065	0.324	0.070	0.376
304	0.070	0.352	0.069	0.359	0.072	0.395
303	0.072	0.376	0.073	0.385	0.073	0.413
302	0.074	0.396	0.074	0.402	0.074	0.428
301	0.075	0.411	0.075	0.417	0.074	$0 \cdot 440$
300	0.076	0.427	0.077	0.432	0.075	0.452
298	0.077	0.464	0.076	0.467	0.075	0.483
296	0.079	0.479	0.079	0.481	0.078	$0 \cdot 480$
294	0.079	0.492	0.079	0.493	0.076	0.490
292	0.079	0.501	0.076	0.505	0.078	0.501
290	0.078	0.510	0.076	0.514	0.078	0.511
285	0.068	0.550	0.072	0.552	0.079	0.552
280	0.071	0.571	0.068	0.572	0.073	0.566
275	0.069	0.593	-	-	-	-
270		-	0.066	0.608	-	-

3.3. The model

The orientation of solutes in liquid-crystalline systems has been successfully modelled by a potential involving long and short range interactions:

$$
U_{\mathrm{tot}}=U_{\mathrm{tr}}+U_{\mathrm{sr}}
$$

The long range force is taken as the interaction of the mean electric field gradient of the liquid crystal \mathbf{F} and the molecular quadrupole moment of the solute \mathbf{Q} :

$$
U_{\mathrm{lr}}=-\frac{1}{3} \sum_{\beta, \gamma=x, y, z} F_{\beta \gamma} Q_{\beta \gamma} .
$$

The average electric field gradient of a uniaxial liquid crystal with director along the space-fixed Z direction is completely determined by $F_{Z Z}$, which can be estimated from
the N.M.R. spectrum of ${ }^{2} \mathrm{H}_{2}$ dissolved in the liquid crystal [6, 20]. We assume that all solutes experience the same $F_{Z Z}$ as ${ }^{2} \mathrm{H}_{2}$.

The short range interaction is modelled as a hard body repulsive force between the solute, represented by a collection of van der Waals spheres, and the liquid crystal medium, represented by an elastic continuum:

$$
U_{\mathrm{sr}}(\Omega)=\frac{1}{2} k c^{2}(\Omega)
$$

Here k is a Hooke's law force constant and c is the circumference of the solute for some orientation Ω projected into the $X Y$ plane of the liquid crystal. The order matrix of the solute is calculated by numerical integration over all orientations and conformations [15].

3.4. Application of the model to solutes

Without knowledge of the molecular quadrupole moment of 1 CB , the above model cannot be applied directly to 1 CB as a solute in 5 CB , since both mechanisms contribute to the orientational order. However, for 1CB in $55 \mathrm{wt} \%$ 1132/EBBA only the short range mechanism operates, and a fit yields a value of $k_{1132 / \text { EBBA }}(1 \mathrm{CB})$. For solutes with known molecular quadrupole moments, optimal values of k can be found in both 5CB and $55 \mathrm{wt} \%$ 1132/EBBA. By comparison of the average ratio of $k_{5 \mathrm{CB}} / k_{1132 / \mathrm{FBBA}}$ for various solutes with the value for $k_{1132 \mathrm{EBBA}}(1 \mathrm{CB})$, an estimate of $k_{\text {SCB }}(1 \mathrm{CB})$ can be calculated.

The mean electric field gradient, $F_{Z Z}$, in 5CB has previously been determined as a function of temperature using molecular deuterium [10]. The orientational behaviour of a series of small solutes in 5CB has also been studied [10]. Using molecular quadrupole moments of the solutes from the literature (references given in [11]), an optimal value of the force constant, k, in 5CB for each solute was found. In addition, these same solutes have been studied in $55 \mathrm{wt} \% 1132 /$ EBBA at $301 \cdot 4 \mathrm{~K}$ where the electric field gradient at the ${ }^{2} \mathrm{H}$ nucleus of molecular deuterium is zero [12]. We assume that in this system only the short range mechanism contributes to orientation of the solute, and values for $k_{132 / E B B A}$ (solute) have been determined.

The individual values for the force constant necessary to fit the order parameters of eight solutes in $55 \mathrm{wt} \% 1132 /$ EBBA at 301.4 K [12] and in 5 CB at 294 K [10] are given in table 3 . The values of $k_{\text {SCB }}$ (solute) are corrected for the changes which the solutes induce on the 5 CB . The effect is quantified by the change in quadrupolar splitting from deuterons in the α position on the chain, using the α splitting of 5CB with lCB as a solute of $294 \mathrm{~K}(56.88 \mathrm{kHz})$ as a reference. The correction term is taken as $d k / d \Delta v_{\alpha}=0.1141 \times 10^{-3} \mathrm{Nm}^{-1} \mathrm{kHz}^{-1}$ [10]. The values for $k_{1132 / \mathrm{EBBA}}$ are not adjusted, since all solutions have similar splittings for the EBBA ring deuterons [11].

The ratio $k_{1 ; 32 / \mathrm{EBBA}} / k_{\text {SCB }}$ is also given for each solute in table 3 . The average ratio $(1 \cdot 13 \pm 0 \cdot 19)$ is in good agreement with the individual ratios for a number of the solutes. Of particular interest is the proximity of the average to the value for $1,3,5-$ trichlorobenzene, for which the dependence dependence of the force constant in 5CB has been studied [10]. We use this average to determine the value of $k_{\text {SCB }}(1 \mathrm{CB})$.

3.5. Application of the model to $1 C B$

The experimentally determined molecular order matrix of 1 CB in $55 \mathrm{wt} \%$ 1132/ EBBA at 301.4 K [15] is used in the model to find a value of $k_{1132 / \mathrm{EBBA}}(\mathrm{lCB})=$ $4.0 \times 10^{-3} \mathrm{~N} \mathrm{~m}^{-1}$. Using the average ratio of $k_{1132 / \mathrm{EBBA}} / k_{5 C B}$ reported above, the value
A. L. Bailey et al.
Table 3. Calculated values of $k\left(10^{-3} \mathrm{Nm}^{-1}\right)$ for solutes in $55 \mathrm{wt} \% 1132 / \mathrm{EBBA}$ and 5 CB , corrected values in 5CB, and ratios.

Solute	$k_{1132 / \mathrm{EBBA}}(a)$	$k_{\text {SCB }}(b)$	$\Delta v_{\alpha} 5 \mathrm{CB} / \mathrm{kHz}(c)$	$k_{\text {SCB }}($ d $)$	$\frac{k_{1132 / E \mathrm{EBA}}}{k_{\text {SCB }}(d)}$
Benzene	8.58	4.37	44.03	5.82	1.47
1,3,5-Trichlorobenzene	6.47	$5 \cdot 06$	53.61	5.42	$1 \cdot 19$
1,3,5-Tribromobenzene	4.38	4.54	50.05	$5 \cdot 31$	0.82
2,4-Hexadiyne	$4 \cdot 63$	4.15	55.68	4.28	1.08
2-Butyne	$5 \cdot 23$	4.05	48.04	5.05	1.04
Allene	5.99	4.48	52.20	$5 \cdot 00$	1.20
Acetylene	$7 \cdot 45$	7.36	58.11	7.21	1.03
Propyne	$6 \cdot 49$	5.15	$53 \cdot 17$	$5 \cdot 56$	$1 \cdot 17$
1 CB	4.00 (e)		56.88	$3.6 \mp 0.6(f)$	$\overline{\operatorname{avg} 1.13(\pm 0.19)}$

[^0]of $k_{5 C B}(1 \mathrm{CB})$ at 294 K is predicted to be $(3.6 \mp 0.6) \times 10^{-3} \mathrm{~N} \mathrm{~m}^{-1}$, where the error limits used throughout reflect the sign and value of the standard deviation in the average $k_{1132 / \mathrm{EBBA}} / k_{\text {SCB }}$.

In order to predict the behaviour of 1 CB in 5 CB at other temperatures, we assume that $k_{\text {sCB }}(1 \mathrm{CB})$ has the same dependence on Δv_{α} as the force constant for 1,3,5-trichlorobenzene, $k_{\mathrm{SCB}}(\mathrm{TCB})$:

$$
\frac{d k_{\mathrm{SCB}}(\mathrm{ICB})}{d \Delta v_{\alpha}}=\frac{d k_{\mathrm{SCB}}(\mathrm{TCB})}{d \Delta v_{\alpha}} \frac{k_{\mathrm{SCB}}(\mathrm{ICB})_{294 \mathrm{~K}}}{k_{\mathrm{SCB}}(\mathrm{TCB})_{294 \mathrm{~K}}} .
$$

We also assume that the electric field gradient in 5 CB is the same for a given Δv_{α} as measured in experiments with ${ }^{2} \mathrm{H}_{2}$ as a solute. The resulting values of $k_{\mathrm{SCB}}(1 \mathrm{CB})$ and $F_{Z Z}$ at various temperatures are given in table 4.

Table 4. Calculated values of the electric field gradient [10] and force constant of 1CB in 5CB and predicted values of the order matrix.

T / K	$\Delta v_{x}(5 \mathrm{CB}) / \mathrm{kHz}$	$F_{z z} / 10^{4} \mathrm{~V} \mathrm{~m}^{-1}$	$k / 10^{-3} \mathrm{~N} \mathrm{~m}^{-1}$	$S_{z z}$ (calc.)	$S_{y y}-S_{x x}$ (calc.)
304	40.86	4.29	2.35	0.3230	0.0676
300	49.90	6.09	3.02	0.4182	0.0762
294	56.88	7.47	3.54	0.4916	0.0782
290	59.47	8.01	3.73	0.5202	0.0781
285	63.70	8.85	4.05	0.5629	0.0769

For given values of $k_{5 C B}(1 C B)$ and $F_{Z Z}$ the calculated order matrix can be fitted exactly to the experimental value by adjusting the principal components of the molecular quadrupole moment tensor. At 294 K the values obtained are $Q_{z z}=$ $(-1.4 \pm 3.2) \times 10^{-5} \mathrm{Cm}^{-2}$ and $Q_{y y}-Q_{x x}=(3.5 \pm 0.7) \times 10^{-5} \mathrm{Cm}^{-2}$. Note that $Q_{y y}-Q_{x x}$ is much better determined than $Q_{z z}$, which is closely correlated to the value of k. However, the value of $Q_{y y}-Q_{x x}$ depends on the ability of the model for short range forces to predict $S_{y y}-S_{x x}$. The estimate of $Q_{y y}-Q_{x x}$ may be too large, since the short range model predicts a value of $S_{y y}-S_{x x}=0.040$, which is smaller than that observed in $55 \mathrm{wt} \%$ 1132/EBBA ($=0.053$).

Using the fit for the quadrupole moment of 1 CB at 294 K , the order matrix of 1 CB at other temperatures throughout the nematic range is calculated by the model to give values of $S_{z z}$ and $S_{y y}-S_{x x}$ as reported in table 4. A comparison of calculated and experimental values of $S_{z z}$ is presented in figure $4(a)$, which gives $S_{z z}$ as a function of reduced temperature. The model gives a very good fit to the experimental results.

Figure 4 (b) compares experimental and calculated values of the asymmetry in the order matrix by plotting $S_{y y}-S_{x x}$ versus $S_{z z}$. In this plot $S_{y y}-S_{x x}$ values predicted by the model lie in a curve coincidental with the experimental results. Also shown are the values calculated if only the short range mechanism is considered. The single mechanism can only account for a part of the observed asymmetry in the order matrix, giving a curve well below and centred to the right of the experimental results. A fit of \mathbf{Q} with just the long range mechanism gives asymmetries close in magnitude to the experimental results, but the curve lies to the left of the experimental one in agreement with [21]; in addition, unrealistically large values of $Q_{z z}=+16.9 \times$ $10^{-5} \mathrm{Cm}^{-2}$ and $Q_{y y}-Q_{x x}=8.1 \times 10^{-5} \mathrm{Cm}^{-2}$ are required. It is apparent that neither mechanism alone can explain the temperature dependence of the orientation of 1 CB in 5 CB . Fitting the model with both mechanisms at a single temperature gives

Figure 4. (a) Plot of the experimental and calculated values of $S_{z z}$ of $1 \mathrm{CB}-\mathrm{d}_{11}$ against reduced temperature ($T / T_{\mathrm{NI}^{-}}$) : experimental values for $\times, 3 \mathrm{~mol} \% 1 \mathrm{CB}-\mathrm{d}_{11} ; \square, 10 \mathrm{~mol} \% 1 \mathrm{CB}-\mathrm{d}_{11}$; ,$+ 25 \mathrm{~mol} \% 1 \mathrm{CB}-\mathrm{d}_{11}$; calculated values are shown as . (b) Plot of the asymmetry of the order matrix of $1 \mathrm{CB}, S_{y y}-S_{x x}$, against $S_{z z}$: experimental values for $x, 3 \mathrm{~mol} \% 1 \mathrm{CB}-\mathrm{d}_{11}$; $\square, 10 \mathrm{~mol} \% 1 \mathrm{CB}-\mathrm{d}_{11} ;+, 25 \mathrm{~mol} \% 1 \mathrm{CB}-\mathrm{d}_{11} ; \square$, calculated values using the two-mechanism model; A, values of the best fit when only the short range mechanism is considered.
sensible values of k and \mathbf{Q} for $1 \mathbf{C B}$, which in turn predict the order matrix at other temperatures in very good agreement with experimental results.

Considering the simplicity of our description of the short range interaction, the two mechanism model predicts the orientational behaviour of 1 CB in 5CB extremely well. Modelling the liquid crystal as an elastic continuum is an immense simplification of the actual hard body interactions which occur between the solute and the medium.

The estimation of the molecular quadrupole moment of 1 CB is derived from quadrupole moments of other solutes, the values of which vary greatly in the literature. In addition, the value of the predicted quadrupole moment tensor of 1 CB is very sensitive to small changes in the geometry of 1 CB and to the value of k chosen for the model.

4. Conclusions

We have studied mixtures of 1 CB and 5 CB in order to investigate the mechanisms of molecular orientation in nematic phases. Although 1CB is non-mesogenic, it is structurally similar to the nematic liquid crystal 5 CB , differing only in the length of the alkyl chain. Because of this similarity, 1 CB is a useful probe for studying the intermolecular interactions responsible for orientational order. The concentration of 1CB dissolved in 5CB has no effect on the ${ }^{2}$ H-N.M.R. spectra of either the 1 CB or the 5 CB in samples observed at equivalent reduced temperatures. However, the relatively high symmetry and rigidity of 1CB makes interpretation of the spectral results much simpler than is the case with flexible, asymmetric liquid crystal molecules.

The results are consistent with a model which describes the intermolecular interactions with two terms. The first is the interaction between the mean electric field gradient of the medium with the molecular quadrupole moment of the solute. The second is a simple model for the short range repulsive forces, which treats the liquid crystal as an elastic medium.

Using the model we obtain an estimate for the molecular quadrupole moment tensor of 1 CB , and this in turn is used to predict the temperature dependence of the order matrix of 1 CB in 5CB. The model, previously shown to be adequate for small solutes, is shown here to be very successful in predicting the orientation of larger molecules. This is an important step toward developing a successful model for flexible, asymmetric liquid crystal molecules.

We thank Barbara Frisken and Dr Peter Palffy-Muhoray for assistance with the microscopy. We wish to acknowledge the N.S.E.R.C. of Canada (G.S.B., E.E.B.) and the Thomas F. and Kate Miller Jeffress Memorial Trust (G.L.H.) for financial support.

References

[1] Saupe, A., 1966, Molec. Crystals, 1, 527.
[2] Anderson, J. M., 1971, J. magn. Reson., 4, 231.
[3] SAMULSKI, E. T., 1980, Ferroelectrics, $30,83$.
[4] Robertson, J. C., Yim, C. T., and Gilson, D. F. R., 1971, Can. J. Chem., 49, 2345.
[5] Snijders, J. G., de Lange, C. A., and Burnell, E. E., 1982, J. chem. Phys., 77, 5386.
[6] Patey, G. N., Burnell, E. E., Snidders, J. G., and de Lange, C. A., 1983, Chem. Phys. Lett., 99, 271.
[7] Burnell, E. E., van der Est, A. J., Patey, G. N., de Lange, C. A., and Snijders, J. G., 1987, Bull. Magn. Resonance, 9, 4.
[8] Van Der Est, A. J., 1987, Ph.D. thesis, University of British Columbia.
[9] Van der Est, A. J., Kok, M. Y., and Burnell, E. E., 1987, Molec. Phys., 60, 397.
[10] Weaver, A., van der Est, A. J., Rendell, J. C. T., Hoatson, G. L., Bates, G. S., and Burnell, E. E., 1987, Liq. Crystals, 2, 633.
[11] Kok, M. Y., van der Est, A. J., and Burnell, E. E., 1988, Liq. Crystals, 3, 485,
[12] Barker, P. B., van der Est, A. J., Burnell, E. E., Patey, G. N., de Lange, C. A., and Snijders, J. G., 1984, Chem. Phys. Lett., 107, 426.
[13] van der Est, A. J., Burnell, E. E., and Lounila, J., 1988, J. chem. Soc. Faraday Trans. $I I, 84,1095$.
[14] Кок, M. Y., 1986, M.Sc. thesis, University of British Columbia.
[15] Hoatson, G. L., Bailey, A. L., van der Est, A. J., Bates, G. S., and Burnell, E. E., 1988, Liq. Crystals, 3, 683. Due to a computational error, the calculated order matrix for 1CB in this paper is incorrect. The correct values are $S_{x x}=-0.307, S_{y y}=-0.267$ and $S_{z z}=0.574$.
[16] Palffy-Muhoray, P., de Bruyn, J. R., and Dunmur, D. A., 1985, Molec. Crystals liq. Crystals, 127, 301.
[17] Bates, G. S., Beckmann, P. A., Burnell, E. E., Hoatson, G. L., and Palffy-Muhoray, P., 1986, Molec. Phys., 57, 351.
[18] Bates, G. S., Burnell, E. E., Hoatson, G. L., Palffy-Muhoray, P., and Weaver, A., 1987, Chem. Phys. Lett., 134, 161.
[19] Diehl, P., and Reinhold, M., 1978, Molec. Phys., 36, 143.
[20] Sniders, J. G., de Lange, C. A., and Burnell, E. E., 1983, Israel J. Chem., 23, 269.
[21] Emsley, J. W., Hashim, R., Luckhurst, G. R., and Shilstone, G. N., 1986, Liq. Crystals, 1, 437.
[22] Stinton, S. W., Zax, D. B., Murdock, J. B., and Pines, A., 1984, Molec. Phys., 53, 333.
[23] Bondi, A., 1964, J. phys. Chem., 68, 441.

[^0]: (a) Calculated from order matrix data taken at 301.4 K in $55 \mathrm{wt} \%$ 1132/EBBA [11].
 (b) Calculated using order matrix data at 294 K from [10], field gradients as determined by molecular deuterium in [10] and molecular quadrupole moments given in [11].
 (d) Values corrected for differences in electric field gradient as determined from the α-deuteron splittings. The values reported correspond to
 $\Delta v_{x}=56.88 \mathrm{kHz}$, the value with 1 CB as the solute (see text).
 (e) Calculated assuming zero field gradient using order matrix data given in [15].
 (f) Predicted value based on the average ratio and standard deviation for other solutes relative to those in $55 \mathrm{wt} \% 1132 / \mathrm{EBBA}$.

